首页> 外文OA文献 >Root systems from Toric Calabi-Yau Geometry. Towards new algebraic structures and symmetries in physics?
【2h】

Root systems from Toric Calabi-Yau Geometry. Towards new algebraic structures and symmetries in physics?

机译:Root系统来自Toric Calabi-Yau Geometry。走向新的代数   物理学中的结构和对称性?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The algebraic approach to the construction of the reflexive polyhedra thatyield Calabi-Yau spaces in three or more complex dimensions with K3 fibresreveals graphs that include and generalize the Dynkin diagrams associated withgauge symmetries. In this work we continue to study the structure of graphsobtained from $CY_3$ reflexive polyhedra. We show how some particularly definedintegral matrices can be assigned to these diagrams. This family of matricesand its associated graphs may be obtained by relaxing the restrictions on theindividual entries of the generalized Cartan matrices associated with theDynkin diagrams that characterize Cartan-Lie and affine Kac-Moody algebras.These graphs keep however the affine structure, as it was in Kac-Moody Dynkindiagrams. We presented a possible root structure for some simple cases. Weconjecture that these generalized graphs and associated link matrices maycharacterize generalizations of these algebras.
机译:构造自反多面体的代数方法,可在三个或更多个复杂维度上产生Calabi-Yau空间,并带有K3纤维揭示图,其中包括并推广了与规范对称性相关的Dynkin图。在这项工作中,我们继续研究从$ CY_3 $自反多面体获得的图的结构。我们展示了如何将一些特别定义的积分矩阵分配给这些图。可以通过放宽对与表征Cartan-Lie和仿射Kac-Moody代数的Dynkin图相关的广义Cartan矩阵的各个条目的限制,来获得该矩阵族及其关联图。但是,这些图保留了仿射结构Kac-Moody动态图。我们介绍了一些简单情况下可能的根结构。我们推测,这些广义图和关联的链接矩阵可以表征这些代数的概括。

著录项

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号